Length dependence of charge transport in oligoanilines

Jin He,a) Fan Chen,b) and Stuart Lindsaya)
The Biodesign Institute, Department of Physics, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287

Colin Nuckolls
Department of Chemistry, Columbia University, New York, New York 10027
(Received 14 December 2006; accepted 12 January 2007; published online 16 February 2007)

The conductance of aniline trimers, pentamers, and heptamers has been measured in a molecular junction as a function of the oxidation state of the molecules by making measurements under electrochemical potential control. The effective electronic decay length is too small to be consistent with simple tunnel transport in the neutral molecule and is even smaller in the oxidized molecule. Thus these molecules can act as relatively high conductance links even in the absence of the interchain hopping required for metallic behavior. © 2007 American Institute of Physics. [DOI: 10.1063/1.2472758]

Oligoanilines with well defined chain lengths are model compounds for studying the single molecule aspects of charge transport in polyaniline.1–3 Single molecule measurements permit quantitative comparison with theory4 and, when combined with electrochemical potential control, they permit quantitative measurements of the single molecule conductance as a function of the oxidation state of the molecule.5 We previously studied an aniline heptamer5 with simple tunnel transport in the neutral molecule and is even smaller in the oxidized molecule. Thus these molecules can act as relatively high conductance links even in the absence of the interchain hopping required for metallic behavior. © 2007 American Institute of Physics.

Previously,5,6 briefly, a break junction is formed repeatedly by pushing a gold probe into a Au(111) substrate6 and recording the current versus time as the probe is withdrawn. Steps in the current versus time correspond to integer numbers of molecules trapped in the gap.10 A partially insulated probe11 permits operation of the system in a conducting electrolyte with surface potential under electrochemical control and the tip maintained at a fixed potential difference with respect to the surface.7 The leakage current in the electrolyte through the insulated scanning tunneling microscope tip is 1–2 pA and thus negligible in our experiments. Potential control was maintained relative to a silver wire quasireference, calibrated and prepared as described earlier.5,6 The reference was stable and reproducible to ±20 mV.

Oligoanilines with well defined chain lengths are model compounds for studying the single molecule aspects of charge transport in polyaniline.1–3 Single molecule measurements permit quantitative comparison with theory4 and, when combined with electrochemical potential control, they permit quantitative measurements of the single molecule conductance as a function of the oxidation state of the molecule.5 We previously studied an aniline heptamer5 with simple tunnel transport in the neutral molecule and is even smaller in the oxidized molecule. Thus these molecules can act as relatively high conductance links even in the absence of the interchain hopping required for metallic behavior. © 2007 American Institute of Physics.

FIG. 1. (a) Molecular structure. (b) High conductance (light gray) and low conductance (gray) histograms of pentamer based on several thousand current-distance curves at \(V = 200 \text{ mV} \) in toluene. The peaks correspond to one, two, three, and five molecules in the gap. The gray and black curves are Gaussian fits to the histogram peaks for the high conductance and low conductance data, respectively. (c) Current-voltage characteristics for trimer (squares), pentamer (triangles), and heptamer (circles) in toluene. Data are for the high conductance series of peaks in the conductance histograms. The solid lines are fits to polynomials. Error bars are the width of the first peak in the conductance histograms.
TABLE I. Electrochemical data for aniline oligomers.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>1st (E_{on}/E_{red})</th>
<th>2nd (E_{on}/E_{red})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimer</td>
<td>0.33/0.30</td>
<td>0.76/0.67</td>
</tr>
<tr>
<td>Pentamer</td>
<td>0.28±0.02</td>
<td>0.71±0.01</td>
</tr>
<tr>
<td></td>
<td>/0.24±0.01</td>
<td>/0.66±0.03b</td>
</tr>
<tr>
<td>Heptamer</td>
<td>0.17/0.15</td>
<td>0.6/0.57</td>
</tr>
</tbody>
</table>

\[\text{In 50 mM H}_2\text{SO}_4 \text{ acid, scan rate of 100 mV/s, and vs Ag wire.} \]
\[\text{Based on average of eight experiment runs.} \]

The oxidation potentials of this series of molecules depend on their length, indicative of changes in electronic structure with length. Our data (Table I) are in reasonable agreement with previously published data. Our electronic measurements were confined to the potential region that includes only the first oxidation peak because this is stable over many cycles. The potential of the first oxidation peak, \(V_p \), depends linearly \((R=0.98) \) on the number of monomers, \(N \).

\[
V_p = 0.46 - 0.04N \text{ V versus Ag wire. (1)}
\]

The single molecule conductance was determined from a histogram of the values of the measured conductances [Fig. 1(b)] as described elsewhere. The recorded current depends sensitively on the nature of the contacts, and it is not unusual to observe more than one series of peaks, corresponding to different types of atomic geometry at the connection.4,14–16 We found only one series in the case of the heptamer and two (a low and a high conductance series) in the case of the trimer.6 Two values of conductance were also found for the pentamer, as shown by the two histograms in Fig. 1(b). If the single series for the heptamer corresponds to the “low” value, we would expect to detect steps at yet higher current multiples but we find no evidence for it, so we conclude that the measured heptamer data belong to the “high” conductance set. Therefore, in what follows we confine our attention to this high conductance data set so that we can make meaningful comparisons across the entire series of molecules.

Figure 1(c) shows current-voltage, \(I(V) \), characteristics of the three oligoanilines in toluene for the high conductance data set. The shape of \(I(V) \) is distinctly nonlinear for both trimer and pentamer. The heptamer characteristic is fitted by \(i=G_{1}V+G_{2}V^2 \) where \(G_{1}=-0.14 \) (pentamer) and 0.3 nS (trimer) and \(G_{2}=2.95 \) (pentamer) and 3.16 nA/V^2 (trimer). Electric-field induced changes of structure might account for this effect (though it does not scale linearly with field).

We plot the conductance of these neutral molecules versus \(N \) in Fig. 2. In order to accommodate the nonlinear characteristics, we have plotted separate data for each bias [Fig. 2(a)=0.2 V, Fig. 2(b)=0.3 V, Fig. 2(c)=0.4 V]. At low bias, the decay is fitted quite well by an exponential [solid line in Fig. 2(a)],

\[
G = A \exp(- \beta_N N), \tag{2}
\]

where \(A \) is the contact conductance and can be obtained from the fitting. The fit is less good at the two higher biases [Figs. 2(b) and 2(c)]. The fits yield \(\beta_N=0.33\pm0.1 \) (0.2 V), \(\beta_N=0.47\pm0.15 \) (0.4 V). Taking each monomer to be 5.7 Å leads to \(\beta=0.06–0.08 \) Å⁻¹, depending on the bias. This is at least five times smaller than the value calculated in first-principles tunneling calculations (\(\beta=0.3–0.4 \) Å⁻¹), a remarkably large discrepancy.

What do such small decay lengths mean? We can understand the decay length for a simple tunneling system in terms of the energy gap \(\Delta E \) between the Fermi level of the electrodes and the HOMO (or LUMO, which ever is closer) in terms of a simple model.18 With \(\Delta E \) in eV and the tunnel gap \(L \) expressed in Å,

\[
G = A \exp(- \sqrt{2\Delta EL}), \tag{3}
\]

from which we see that \(\Delta E \sim \beta^2/1.04 \). Our experimental values for \(\beta \) would yield values for \(\Delta E \) on the order of 5 mV, clearly not compatible with the rather low room-temperature conductances observed in the neutral molecules.

The simple model of Eq. (3) neglects the dependence of the electronic states on the length of the molecule [Eq. (1)]. The (inappropriate) particle-in-a-box model gives \(\Delta E \sim 1/L^2 \) which would lead to non-length-dependence for \(G \). Thus, we must take into account the length dependence of \(\Delta E \) in fitting these data. We can make a better model of the length dependence of \(\Delta E \) using the electrochemical data summarized by Eq. (1). These are a measure of the energy difference between the state being oxidized and the Fermi energy of the electrode and can be connected with the energy of states that mediate tunneling.19 Thus we will use Eq. (1) but scale the constant part by a factor \(\gamma \) to take into account the energy shift between relaxed and unrelaxed states and to avoid the need to try to relate electrochemical potentials to an absolute scale. This leads to the following expression for the length dependence of the conductance:

\[
G = A \exp(- \sqrt{(0.46\gamma - 0.04\gamma N)}N), \tag{4}
\]

Fits using this function yield the dotted lines in Fig. 2 with \(\gamma=1.00\pm0.07 \) (0.2 V), \(0.98\pm0.27 \) (0.3 V), and \(1.07\pm0.27 \) (0.4 V). The corresponding value of \(\beta_N \) now varies with \(N \) and spans the range \(\beta_N=0.58 \) (\(N=3 \)) to \(\beta_N=0.42 \) (\(N=7 \)). Again, using a monomer length of 5.7 Å, this corresponds to \(\beta=0.1–0.07 \) Å⁻¹. These values are still three to four times less than predicted by a tunneling theory and the corresponding \(\Delta E \) turns out to be only a little bit bigger than the \(\sim 5 \) mV produced by the simple exponential fit.
The conductance peak. Fits to the conductance versus potential, the surface potential at which the molecule has maximum conductance.

The data were taken at a small substrate to tip gap in order to avoid disturbing the local transport in these molecules. We also measured the potential dependence of the single molecule conductance of trimers. Values are for the first oxidation potential. Our previous data for the oxidized oligomers. Values are for the maximum conductance \(G_M\) obtained by fitting data to Eq. (5). All data were obtained in 50 mM \(H_2SO_4\) under potential control. The fits are to Eq. (2) (solid line), Eq. (4) (dotted line), and the \(1/N\) dependence expected for hopping (dash line).

The above discussion assumes that the mechanism is indeed tunneling. A hopping mechanism would lead to \(G = A/N\) (Ohm’s law, shown by the dashed line in Fig. 2). These fits are not as good as the tunneling models, suggesting that pure hopping is also not the only contributor to transport in these molecules.

We also measured the potential dependence of the single molecule conductance of the pentamer, finding it to be strongly dependent on potential \(E_s\) with a peak in the vicinity of the first oxidation potential. Our previous data for \(G\) vs \(E_s\) were fitted with a quadratic dependence of conductance on potential.\(^6\)\(^5\) We found that a Gaussian gave a somewhat better fit:

\[
G = A_0 + G_M \exp\left(-2 \frac{(E_s - E_s^M)^2}{w^2}\right). \tag{5}
\]

Here, \(E_s^M\) is the surface potential at which the molecule has maximum conductance and \(w\) determines the width of the conductance peak. Fits to the conductance versus potential, \(G(E_s)\), data for all of the molecules measured are shown in Fig. 3(a), and the corresponding fitting parameters are listed in Table II \(A_0\) is close to 0 in all cases and is not shown). The data were taken at a small (50 mV) bias applied across the substrate to tip gap in order to avoid disturbing the local potential.\(^20\) Clearly, Eq. (5) describes the potential dependence of the single molecule conductance well.

This work, taken together with the two previous studies,\(^5\)\(^6\) also allows us to examine the conductance decay for the oxidized molecule at its peak conductance \(E_s = E_s^M\). We have plotted the peak value of the conductance for the trimer, pentamer, and heptamer in Fig. 3(b) [error bars are relatively small because the entire data set was fitted, see Eq. (5)]. It is clear that the data are not well fitted by any of the models (exponential, variable energy barrier, and hopping). The exponential fit yields \(\beta = 0.3 \pm 0.1\), corresponding to \(\beta = 0.06 \text{ Å}^{-1}\). The variable-barrier model [Eq. (4)] yields \(\gamma = 0.6 \pm 0.5\). This is substantially less than the value of \(\sim 1\) found in the neutral molecule, reflecting a significant shift of electronic levels on oxidation of the molecules.

In summary, we have measured the single molecule conductance of three lengths of aniline oligomer. These data yield apparent decay lengths that are smaller by at least a factor of 5 than the predictions of tunneling theory and inconsistent with reasonable values of tunneling barrier. Thus, it appears that there is a significant additional contribution to the conductance of these molecules from another process (such as hopping) even in these very short molecules and even in the absence of the interchain hopping that dominates conductance in the bulk material. Thus, these molecules would serve remarkably well as short connectors in nanoscale electronic circuitry.

The authors acknowledge the support of a NIRT award of the NSF.

TABLE II. Important parameters for the Gaussian fits to the dependence of the single molecule conductance on potential \((G_M, E_s^M, w)\). Here, \(E_s^M\) is the surface potential at which the molecule has maximum conductance. \(G_M\) and \(w\) determine the width of the conductance peak.

<table>
<thead>
<tr>
<th></th>
<th>(G_M) (nS)</th>
<th>(w)</th>
<th>(E_s^M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimer high</td>
<td>19 ± 2</td>
<td>0.18 ± 0.02</td>
<td>0.48 ± 0.01</td>
</tr>
<tr>
<td>Pentamer high</td>
<td>15 ± 1</td>
<td>0.2 ± 0.1</td>
<td>0.47 ± 0.01</td>
</tr>
<tr>
<td>Heptamer high</td>
<td>6 ± 1</td>
<td>0.21 ± 0.05</td>
<td>0.34 ± 0.01</td>
</tr>
</tbody>
</table>

\(^4\)S. M. Lindsay, Faraday Discuss. 131, 403 (2006).
\(^14\)J. He and S. M. Lindsay, Faraday Discuss. 131, 145 (2006).